

ENSLD (DESIGNING CISCO ENTERPRISE NETWORKS) 1.0

Objetivo

Objectives After taking this course, you should be able to: â∏¢ Design Enhanced Interior Gateway Routing Protocol (EIGRP) internal routing for the enterprise network; â∏¢ Design Open Shortest Path First (OSPF) internal routing for the enterprise network; â∏¢ Design Intermediate System to Intermediate System (IS-IS) internal routing for the enterprise network; â∏¢ Design a network based on customer requirements; â∏¢ Design Border Gateway Protocol (BGP) routing for the enterprise network; â□¢ Describe the different types and uses of Multiprotocol BGP (MP-BGP) address families; â□¢ Describe BGP load sharing; â□¢ Design a BGP network based on customer requirements; â□¢ Decide where the L2/L3 boundary will be in your Campus network and make design decisions; â∏¢ Describe Layer 2 design considerations for Enterprise Campus networks; â t Design a LAN network based on customer requirements; â∏¢ Describe Layer 3 design considerations in an Enterprise Campus network; â∏¢ Examine Cisco SD-Access fundamental concepts; â∏¢ Describe Cisco SD-Access Fabric Design; â∏¢ Design an Software-Defined Access (SD-Access) Campus Fabric based on customer requirements; â□¢ Design service provider-managed VPNs; â∏¢ Design enterprise-managed VPNs; â∏¢ Design a resilient WAN; â∏¢ Design a resilient WAN network based on customer requirements; â∏¢ Examine the Cisco SD-WAN architecture; â∏¢ Describe Cisco SD-WAN deployment options; â∏¢ Design Cisco SD-WAN redundancy; â∏¢ Explain the basic principles of QoS; â∏¢ Design Quality of Service (QoS) for the WAN; â∏¢ Design QoS for enterprise network based on customer requirements; â∏¢ Explain the basic principles of multicast; â□¢ Designing rendezvous point distribution solutions; â□¢ Describe high-level considerations when doing IP addressing design; â∏¢ Create an IPv6 addressing plan; â∏¢ Plan an IPv6 deployment in an existing enterprise IPv4 network; â∏¢ Describe the challenges that you might encounter when transitioning to IPv6; â∏¢ Design an IPv6 addressing plan based on customer requirements; â∏¢ Describe Network APIs and protocols; â∏¢ Describe Yet Another Next Generation (YANG), Network Configuration Protocol (NETCONF), and Representational State Transfer Configuration Protocol (RESTCONF).

Público Alvo

Professionals interested in designing Cisco Enterprise Networks Solution. This course also helps prepare student to take the Designing Cisco Enterprise Networks v1.0 (ENSLD 300-420) exam, which is part of the new CCNP® Enterprise. Network design engineers Network engineers System administrators

Pré-Requisitos

Before taking this course, you should be familiar with: $\hat{a} = 0$ Basic network fundamentals and building simple LANs; $\hat{a} = 0$ Basic IP addressing and subnets; $\hat{a} = 0$ Routing and switching fundamentals; $\hat{a} = 0$ Basic wireless networking concepts and terminology. For reference, here are Cisco Learning Offerings that contribute to recommended skills and knowledge: $\hat{a} = 0$ CCNA Certification Course; $\hat{a} = 0$ Implementing and Operating Cisco Enterprise Network Core (ENCOR).

Carga HorÃiria

40 horas (5 dias).

Conteúdo ProgramÃitico

Course Introduction

Course Outline Course Goals & Objectives

Designing EIGRP Routing

Design EIGRP internal routing for the enterprise network
Describe Scalable EIGRP Designs and Fast Convergence
Describe the issues to consider when designing the EIGRP topology
Examine EIGRP Autonomous Systems and Layered Designs
Explain the use of multiple EIGRP autonomous systems
Describe Scalable EIGRP Hub-and-Spoke and Stub Designs
Describe the EIGRP hub-and-spoke design
Describe EIGRP Convergence Features
Describe the EIGRP convergence features

Designing OSPF Routing

Design OSPF internal routing for the enterprise network
OSPF Neighbor Adjacencies and LSAs
Describe the impact of adjacent neighbors on OSPF scalability
OSPF Scalability Issues
Identify factors that influence OSPF scalability
Define Area and Domain Summarization
Design OSPF area
OSPF Full and Partial Mesh
Explain OSPF full-mesh design challenges
OSPF Convergence
Describe how OSPF convergence can be improved

Designing IS-IS Routing

Design IS-IS internal routing for the enterprise network
Describe the basics of IS-IS
Examine IS-IS Adjacencies and Authentication
Describe IS-IS and OSPF Similarities
Explain IS-IS routing logic in a case study
Describe IS-IS Operations
Examine Integrated IS-IS for IPv6
Describe IS-IS for IPv6

Lab 1 Designing Enterprise Connectivity

Design a network based on customer requirements

Determine the proper routing protocol based on the enterprise design

Define the proper backbone area design based on the enterprise design

Define the proper spoke area design based on the enterprise design

Investigate a special case of the spoke area design in the enterprise.

Implement OSPF summarization design in the enterprise

Define the migration steps for RIPv2-to-OSPF

Route Redistribution

Understand how to disable RIPv2 after a successful migration to OSPF Understand how to disable RIPv2 after a successful migration to OSPF Define the future growth and scalability in the enterprise.

Designing BGP Routing and Redundancy

Design BGP routing for the enterprise network Identify IBGP Scalability Issues BGP Route Reflector Terminology Explain BGP route reflector definitions

Describe the BGP split-horizon rule

Describe route reflector loop prevention mechanisms

Compare BGP Load Sharing Designs

Describe the two ways of connecting networks to the Internet with BGP

Examine Dual and Multihomed BGP Designs

Describe load sharing when dual-homed to one ISP through a single local router

Understanding BGP Address Families and Attributes

Describe the different types and uses of MP-BGP address families
Describe the BGP address family model
Identify BGP route selection criteria
Describe BGP Communities
Design BGP communities
Examine a Case Study—Designing a Dual-Stack MP-BGP Environment
Describe BGP named community lists

Lab 2 Designing an Enterprise Network with BGP Internet Connectivity

Design a BGP network based on customer requirements

Determine the routing protocol needed within a specific scenario

Determine the autonomous system numbers needed within a specific scenario

Determine the BGP sessions within a specific scenario

Determine the BGP communities within a specific scenario

Define the routing policies as they would apply to the sites in North America

Define the routing policies as they would apply to the sites in Europe and Asia

Describe the internet segment and determine traffic exit points

Determine Main Headquarters Multihoming

Determine and prioritize prioritize different default routes from three sources in each location

Determine the final design for each location based on a specific scenario

Designing the Enterprise Campus LAN

Decide where L2/L3 boundary will be in your Campus network and make design decisions

Compare End-to-End and Local VLANs

Describe design considerations of end-to-end and local VLAN designs

Describe the Layer 3 Access Layer

Describe 3-tier network design with Layer 3 access

Examine a Case Study

Describe design considerations with layer 2 distribution interconnect

Designing Layer 2 Campus

Describe layer 2 design considerations for Enterprise Campus networks

Describe VLANs, Trunks, and VTP

Describe recommended design practices that are related to VLANs and trunks

Understanding the Spanning Tree Protocol

Describe why STP is needed in layer 2 environment

STP Root Bridge Placement

Alignment of STP with FHRP

Consistent STP Metrics

Cisco STP Toolkit

STP Stability Mechanism Recommendations

Problem with Unidirectional Links

Comparing Loop Guard with UDLD

UDLD Recommended Practices

MST Recommended Practices

Power over Ethernet for Endpoints and APs

Calculate PoE Requirements: Case Study

Bandwidth and Oversubscription

Wake on LAN and EnergyWise

Describe Port Aggregation Considerations

Describe EtherChannel design considerations

VSS Considerations

Cisco StackWise

Stacking Considerations

First-Hop Redundancy

Describe HSRP and VRRP design considerations

The Case for GLBP

Describe Network Requirements of Applications

Identify traffic types within an enterprise campus network.

Twisted-Pair Cabling

Lab 3 Designing an Enterprise Campus LAN

Design a LAN network based on customer requirements

Designing Layer 3 Campus

Describe layer 3 design considerations in an Enterprise Campus network

Explain why building triangles instead of squares is best for optimal convergence.

How to Build Redundant Links

Explain Routing Convergence

Describe case when routing information will need to converge after failure in equal-cost link Describe Campus network

Limit Peering Across the Access Layer

Describe Routing Protocols and Summarization

Explain why summarization should be performed at the distribution layer

Interior and Exterior Routing Protocols

Using Route Summarization

Summarize at Distribution Layer

Describe Default Routes, Redistribution, and Filtering

BR TREINAMENTOS | www.brtreinamentos.com.br | (11) 3172-0064

Matriz: Av. Fagundes Filho 191 | Conj. 104 - Vila Monte Alegre | São Paulo SP

Salas de aula: Av. Paulista 2006 | 18-andar Bela Vista | São Paulo SP

Describe use case for originating default routes

Route Redistribution Sources

Describe Avoid Transit Traffic

Using Defensive Filtering

Examine Passive Interface, Routing Convergence, and Routing IPv4 and IPv6

Use Cases for Passive Interface

Coexistence of IPv4 and IPv6 IGP Routing

Describe recommended best practices for network management

OOB Management Best Practices

OOB and IB Management Connections

Remote Management Best Practices

Discovering the Cisco SD-Access Architecture

Examine Cisco SD-Access fundamental concepts

Describe Cisco Software Defined Access Overview

Explain what is Cisco SD-Access

Describe the Cisco SD-Access Node Roles

Examine the Fabric Enabled Wireless LAN

Describe the Role of Cisco SD-Access in Cisco DNA

Exploring Cisco SD-Access Fabric Design

Describe Cisco SD-Access Fabric Design

Describe SD-Access Fabric Constructs

Explain the use of Virtual Networks in Cisco SD-Access

Describe Design Requirements of Underlay Network

Describe MTU and Layer 3 to the Access Design

Describe Loopback Propagation and IGP Process for fabric, Point to Point links

Describe DHCP and Security Solutions for the Fabric Domain

Describe the DHCP issues in Co-located Control Plane and Border node and Distributed Describe Control Plane and Border node

Describe Sizing and Single Platform Scalability

Discovering Service Provider-Managed VPNs

Design service provider-managed VPNs

Describe WAN Connection Decision Points

Describe WAN connection considerations

Describe Layer 3 MPLS VPN

Describe Use Routing Protocols at the PE-CE

Describe using EIGRP as the PE-CE routing protocol

Designing Enterprise-Managed VPNs

Design enterprise-managed VPNs

Describe enterprise-managed VPNs

Describe GRE, mGRE, and IPsec

Describe GRE basics

Describe Dynamic VTI, GET VPN, SSL VPN, and FlexVPN

Describe IPsec with DVTI

Describe DMVPN basics

BR TREINAMENTOS | www.brtreinamentos.com.br | (11) 3172-0064

Matriz: Av. Fagundes Filho 191 | Conj. 104 - Vila Monte Alegre | São Paulo SP

Salas de aula: Av. Paulista 2006 | 18-andar Bela Vista | São Paulo SP

Describe EIGRP DMVPN and DMVPN Scaling Explain how EIGRP scales in a DMVPN

Designing WAN Resiliency

Design a resilient WAN

WAN Design Overview

Describe WAN remote site

Describe Common MPLS WAN Design Models

Describe Common Layer 2 WAN Design Models

Describe Common VPN WAN Design Models

Describe Cellular VPN Design Models

Identify 3G and 4G VPN design models + 5G

Connect remote site using the local Internet

Describe remote-site LAN

WAN Connectivity Case Study

Explain some redundancy and connectivity use cases

Describe Basic Traffic Engineering Techniques

Lab 4 Designing Resilient Enterprise WAN

Design a resilient WAN network based on customer requirements

Explain how to guiz the customer

Explain how to select WAN links

Determine the Need for an Overlay VPN

Create a High-Level Design

Examining Cisco SD-WAN Architectures

Examine the Cisco SD-WAN architecture

Describe SDN for the WAN

Describe how the WAN is evolving with SDN

Describe Cisco SD-WAN Components and Functions

Describe the Orchestration Plane

Describe the Management Plane

Describe the Control Plane

Describe the Data Plane

Describe the SD-WAN analytics platform

Describe the Overlay Management Protocol

Describe the Cisco SD-WAN OMP protocol

Define OMP Network Terminology

Describe OMP terminology

Describe Transport Locators

Describe TLOCs

Describe Fabric Operation

Describe how the SD-WAN fabric operates

Cisco SD-WAN Deployment Design Considerations

Describe Cisco SD-WAN deployment options

Describe Controller Deployment Options

Describe Controller Deployment Models

BR Treinamentos

Describe Cisco SD-WAN Cloud Deployment

Describe Cisco SD-WAN Managed Service Provider Deployment

Describe Cisco SD-WAN On-Premises Deployment

Describe how to use an enterprise CA in Cisco SD-WAN

Describe Controller Placement and Challenges

Describe SD-WAN cloud controller placement and issues

Describe Cloud Controller Connections

Describe On-Premises Controller Connections

Describe MPLS and Internet Interconnection

Describe Deployment Considerations

Describe cloud-hosted deployment

Describe On-Premises Deployment Considerations

Describe vBond On-Premises Deployment

Describe vBond and NAT traversal deployment options

Describe Working with NAT

Describe how NAT works with SD-WAN

Describe NAT Traversal Combinations

Describe Zero-Touch Provisioning

Describe the vEdge ZTP process

Describe Considerations for Hybrid Scenarios

Describe Deployment Options: Pure vs Hybrid

Describe the cEdge PnP process

Designing Cisco SD-WAN Routing and High Availability

Design Cisco SD-WAN redundancy

Describe Horizontal Solution Scale

Describe SD-WAN Redundancy

Describe vManage redundancy

Describe Site Design

Describe Path Redundancy

Describe bidirectional forwarding detection

Compare an Underlay vs Overlay Network

Comparing the SD-WAN underlay and overlay networks

Describe SD-WAN Branch Connectivity

Describe DIA

Describe SD-WAN Privacy and Integrity

Describe the SD-WAN security features

Describe SD-WAN Secure Segmentation

Describe SD-WAN Security Features

SD-WAN Security Use Cases

Explore Cisco SD-WAN security use cases

Understanding QoS

Explain the basic principles of QoS

Describe and compare the IntServ and DiffServ QoS models

Provide an overview of classification and marking tools

Describe and contrast the role and usage of policers and shapers

Describe Queuing Tools

Describe the concept of queuing Explain RFC 4594 QoS Recommendations Describe QoS Strategy Models Four-Class QoS Strategy Eight-Class QoS Strategy Example Describe Twelve-Class QoS Strategy

Designing LAN and WAN QoS

Design QoS for the WAN Identify the need for QoS in campus networks VoIP vs. Video

Describe the Classification, Marking, and Policing QoS Model

Queuing and Dropping Recommendations

EtherChannel QoS Design

Buffers and Bursts

Campus QoS Design Example

Explain the need for WAN and branch QoS

Latency and Jitter Considerations

Example of WAN and Branch QoS

OoS in MPLS VPN

Layer 2 Private WAN QoS Administration

Fully Meshed MPLS VPN QoS Administration

MPLS DiffServ Tunneling Facts

MPLS VPN QoS Example

Describe the need for QoS in an IPsec VPN

VPN Use Cases and Their QoS Models

IPsec Refresher

Encryption and Classification in Cisco IOS

MTU Considerations

Describe DMVPN QoS Considerations

GET VPN QoS Considerations

Describe SD-WAN Forwarding

Describe SD-WAN QoS Operation

Describe vEdge Queuing

Lab 5 Designing QoS in an Enterprise Network

Design QoS for en enterprise network based on customer requirements

Describe Traffic Inspection

Describe the options for inspecting different traffic types in the network

Describe the QoS Model

Describe Trust Boundaries

Describe Queuing Mechanisms

Describe Scavenger Traffic

Describe MPLS DiffServ Tunneling

Describe a QoS Design for an Enterprise Network

Exploring Multicast with PIM-SM

Explain the basic principals of multicast

Explain How IP Multicast Works

Explain Multicast Groups

Describe the IP Multicast Service Model

Describe SD-WAN Multicast Application Support

Describe the multicast application support of Cisco SD-WAN

Describe the Functions of a Multicast Network

Describe Multicast Protocols

Describe Multicast Forwarding and RPF Check Case Study: RPF Check Fails and Succeeds

Explain Multicast Protocol Basics

Provide an overview of multicast protocol basics Describe Multicast Distribution Trees Identification

Describe PIM-SM

Describe Receiver Joins and Source Is Registered

Describe the step of a receiver joining the PIM-SM shared tree

Describe PIM-SM SPT Switchover Describe Multicast Routing Table Describe Basic SSM Concepts Describe Bidirectional PIM

Describe PIM Modifications for Bidirectional Operation

Describe DF Election and Messages

Case Study: DF Election

Designing Rendezvous Point Distribution Solutions

Designing rendezvous point distribution solutions

Rendezvous Point Discovery Case Study: Auto-RP Operation

Provide an example of Auto-RP operation

Auto-RP and BSR Flooding

Describe the Auto-RP scope issue

MSDP Protocol Overview Provide an overview of MSDP

Designing an IPv4 Address Plan

Describe high-level considerations when doing IP addressing design

IPv4 Address Planning Considerations

Plan the IP Addressing Hierarchy

Describe why it is important to create an IP addressing plan that is hierarchical

Create an Addressing Plan

Describe how to determine the size of subnets and correct VLAN assignments

Case Study: Design an IPv4 Address Space Describe how to perform subnetting using VLSM Case Study: Resolve Overlapping Address Ranges

Describe what will be the future needs as related to IPv4 addressing

Allocating More IP Addresses

Describe how would you solve a situation where /24 subnet runs out of available address space

Exploring IPv6

Create an IPv6 addressing plan

IPv6 Address Planning Considerations

Describe the challenges and benefits that come with IPv6

Describe how an Enterprise gets allocated an IPv6 address

Describe how to create an IPv6 addressing plan by linking IPv4 addresses into IPv6 addresses

Describe how to create IPv6 addressing using per-type and per-location design

Describe how to create IPv6 addressing using VLAN IDs

Deploying IPv6

Plan an IPv6 deployment in an existing enterprise IPv4 network

Describe the phased approach to deploying IPv6

Identify the IPv6 services to be deployed

IPv4 and IPv6 Coexistence

Explain the transition from IPv4 to IPv6

Describe IPv6 transition mechanisms

Describe NAT64 and DNS64

Describe Manual Tunnels

Describe Tunnel Brokers

Describe 6rd tunneling and 6rd addresses

Describe DS-Lite

Describe LISP

Describe IPv6 application support

IPv6-Related Security

Describe the IPv6 transition-related security risks, threats, and challenges

Lab 6 Designing an Enterprise IPv6 Network

Design an IPv6 addressing plan based on customer requirements

Choose the IPv6 Address Space Type

Choose the appropriate IPv6 address space type

Connect Sites

Choose the appropriate deployment model

Determine Address Allocation

Analyze Address Provisioning

Analyze Communication Between Branches

Migrate Applications

Analyze Network Management

Analyze the Migration of Services

Describe an Enterprise IPv6 Network Design

Introducing Network APIs and Protocols

Describe Network APIs and protocols

Describing the Evolution of Device Management and Programmability

Describing Data Encoding Formats

Describing JSON

Describing XML

Describing Data Models

Describe Model Drive Programmability Stack

Describing REST

Describing NETCONF Describing gRPC

Exploring YANG, NETCONF, RESTCONF, and Model-Driven Telemetry

Describe YANG, NETCONF and RESTCONF
Define YANG, NETCONF, and RESTCONF
Describe Yang Concepts
Describe NETCONF Concepts
Describe RESTCONF Concepts
Compare NETCONF and RESTCONF
Define Model-Driven Telemetry
Describe Stream Telemetry Data
Explain Subscription
Describe Model-Driven Telemetry

Describe Dial-In and Dial-Out Model-Driven Telemetry